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1 Motivation 
How a manager maximizes profit is central to courses in microeconomics and managerial economics. On 
the output side, this entails understanding unit costs. Unit costs can be analyzed using cost functions, 
which measure the cost of production as a function of the quantity of products produced (Q). Classic 
textbook presentations portray a cubic cost function that exhibits marginal costs falling as output 
increases to some efficient level, and then rising after that. Cubic cost functions embody economies of 
scale, making it easy to illustrate that concept with quadratic average cost curves. 
 Many instructors (certainly these two) have discovered that generating cubic cost functions is 
harder than it looks. A number of standard assumptions used in microeconomic theory constrain the set 
of parameters that can generate valid cubic cost functions. Davis (2014) presents a set of three similar 
looking cubic cost functions and explains why only one of them is economically sound. Because finding 
valid cubic cost functions is tricky, many textbooks offer problems based on quadratic cost functions with 
linear marginal cost curves—in spite of the conceptual appeal of cubic cost functions (Baye and Prince 
2017; Bernheim and Whinston 2014; McGuigan, Moyer, and Harris 2014). If instructors do employ cubic 
cost functions, they typically identify one or two well-behaved examples and simply tweak the 
parameters each time they need a new assignment or exam question. Not an ideal system, but it works—
so long as one or two well-behaved functions is sufficient.  
 As communications technology has enabled test takers to share information faster, the need to 
generate multiple formulations of the same problem has grown. By 2020, cloning cost functions from one 
or two exemplars ceased to be sufficient. The global shift to online teaching prompted by the COVID-19 
pandemic meant that virtually all university economics instructors faced a learning environment familiar 
to those who have long taught online: students frequently communicate with peers when completing 
assignments and taking exams. Instructors can respond by varying the problems that different students 
see. One common approach is for the instructor to build a database of problems that are organized by 
question type, so that individual problems of the same type may be drawn at random for an online 
student quiz or examination. Quantitative microeconomic problems that are built from linear or 
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quadratic functions can be varied with little difficulty while remaining theoretically consistent. But 
building tractable problems from cubic cost functions is more complicated, because the parameters must 
satisfy several criteria. 
 To illustrate the problem, consider the three total cost (TC) functions in Figure 1. Each shows TC 
as a function of the quantity (Q) of products made. The TC functions arise from three different 
parameterizations of the cubic function: 

A: 
2 3( ) 3600 10 0.5 0.5ATC Q Q Q Q     

 

B: 
2 3( ) 3600 118 15 0.5BTC Q Q Q Q     

 

C: 
2 3( ) 3600 177 15 0.5CTC Q Q Q Q     

 
All three functions have identical parameters for the fixed cost and cubic terms. All have positive costs. 
But only one suits the purpose of a cost function. TotalCost_A (TCA) has the most obvious flaw: 
 

 

 
 

Figure 1. Total Cost Functions with Identical Fixed Cost and Cubic Parameters May Show 
Pedagogically Undesirable Traits, Like No Minimum Marginal Cost (Curve A) or Declining Total 

Cost (Curve B) 
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marginal costs that only increase, making it unable to illustrate the intuition behind economies of scale. 
Function TotalCost_B (TCB) has costs that decline between 5 and 15 units of quantity, which is 
economically nonsensical. TotalCost_C (TCC) is the only one of the three that has both increasing costs 
and an inflection point where marginal costs switch from declining to increasing. 

The problem of how to generate parameters for tractable cubic cost functions is not new. Davis 
(2014) offers guidelines for quadratic functions and then presents a somewhat arbitrary set of 
parameters for cubic cost functions that incorporates the output price. In a more mathematically 
grounded article, Erfle (2014) derives signs and restrictions for economically consistent 
parameterization of cubic cost functions. His article is accompanied by a helpful, downloadable 
spreadsheet where the user can modify cost function parameters and generate updated graphs of the TC, 
marginal cost (MC), average variable cost (AVC), and average total cost (ATC) functions. 
 What has changed since those articles appeared is not the economic and mathematical principles 
shaping well-behaved cubic cost functions, but rather the need to generate multiple problems without 
difficulty. The objective of this article and the associated workbook is to provide an automated means to 
generate random cubic cost functions that conform with standard microeconomic cost theory and that 
students can readily solve. 
 

2 Learning Objectives and Instructor Goals 
The broad learning objective for cost analysis is for students of microeconomics and managerial 
economics to understand how a firm maximizes profit from the output side, via cost functions. (A 
complementary approach focuses on the input side, via production functions that have a dual, mirror 
relationship to associated cost functions (Debertin 2012).) 

Specific learning objectives of cost function analysis are that (1) the firm’s profit is maximized 
when the marginal revenue (MR) earned from the last unit sold equals its MC in the region where MC is 
rising, (2) in the short run, the firm’s MR must at least cover its AVC, and (3) in the long run, the firm’s MR 
must also cover its ATC. A fourth objective that builds on the first three is that firms may achieve 
economies of scale when the long-run ATC declines with the scale of output. 

For instructors of firm-level cost analysis, the primary teaching objective is to help students to 
master the four learning objectives above. A secondary, but intimately related, teaching objective is to 
accomplish this with numerical examples that fully illustrate the concepts. In this instance, “fully 
illustrate” means using cost functions that can generate sets of results that are consistent with standard 
microeconomic theory and supporting assumptions.  

Cubic cost functions offer the simplest way to illustrate economies of scale via quadratic ATC and 
MC functions. This article aims to facilitate the teaching of these core ideas by identifying the properties 
of well-behaved cubic cost functions and applying those properties to generate valid problems. By 
facilitating the task of generating problems, the algorithm presented here can produce many variations 
on the same basic problem. It also enables the instructor to identify versions with relatively simple 
parameters that offer clear solutions. 
 

3 Mathematical Properties of a Well-Behaved Cost Function 
Economists use the term “well behaved” as code that means a function meets several criteria for it to 
make sense economically. For cost functions, those criteria include: 
  

1. All costs are positive, both variable costs (VC) and fixed costs (FC), so VC(Q) > 0 and FC > 0, Q . 

 

2. Total cost is increasing in output quantity: 0
dTC

dQ
 , so ( ) 0,MC Q Q  . 
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3. The production process exhibits economies of scale up to a point, so ATC declines to a minimum at 

quantity min

ATCQ , after which it increases. 

 
From criteria (2) and (3) follow two consequences: 
 

4. The quadratic MC curve is convex to the origin, so 
2

2
0

d TC dMC

dQ dQ
   and 

2

2
0

d MC

dQ
 , which 

formalizes Criterion #3 that ATC reaches a minimum.  
 

5. The minimum MC (which is the inflection point on the cubic TC function) must lie in the region 
where both Q > 0 and TC > 0, which ensures that TC is increasing in Q. 

 
These criteria point to a cubic form for cost functions. Combining the specific criteria above with 

the mathematical properties of cubic polynomials, we can identify limits on the parameters that give 
shape to the cubic cost function. The cubic formulation here follows the standard economic ordering of 
terms, starting with the constant, as opposed to the standard mathematical form, which starts with the 
cubic term.  

As in the example above, let the TC function be: 
 

 
2 3( )TC Q Q Q Q       , (1) 

 

where all parameters are assumed to be non-zero. The constant term, α, represents FC: 
 
 FC  . (2) 
 

VCs are represented by the remaining terms in the TC equation, and AVC is VC/Q: 
 

 
2 3( )VC Q Q Q Q      (3) 

 

 
2AVC Q Q     . (4) 

 

MC is the first derivative of TC: 
 

 2( ) 2 3
dTC

MC Q Q Q
dQ

      . (5) 

 

Overlaying the economic criteria for a well-behaved cubic cost function with the definitions above, we 
can deduce several parameter restrictions: 
 

1. 0  , from Criterion #1 that all costs are positive and FC   Eq. (2).  
 

2. 0  , from Criterion #2 that TC is increasing in Q and δ is the coefficient on the cubic term, the 
largest in this polynomial. 
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3. 0  . This follows from Criterion #5 (and indirectly from Criteria #3 and #4) that the minimum of 

the MC curve must lie in the positive orthant. Differentiating Eq. (5) and setting the 2nd order 

condition for the minimum MC = 0 yields min
3

MCQ





 . Since Q > 0 and 0  , therefore 0  . 

 
4. 0  . This too follows from Criteria #4 and #5 that the MC minimum lies in the positive orthant. 

To guarantee positive roots for the MC quadratic (meaning no intersection with the Q axis), its 

discriminant must be negative. Therefore 
2 3 0    (Paul 2017), so 

2 3  . Since γ2 and δ 

are positive, β must be also. 
 

5. 
2 3  , as noted above, this discriminant condition satisfies Criterion #5 (Paul 2017). 

 

4 Generating Well-Behaved Cubic Cost Functions 
The Excel workbook and Mathematica worksheet accompanying this article implement the restrictions 
above by randomly generating values for α, β, γ, and δ that meet the four sign restrictions above. Then a 
conditional function checks whether the β parameter meets the fifth restriction, restated to require 

2

3





 .  

Although the five conditions above are all that are necessary to generate cubic cost functions that 
meet economic criteria, two other conditions are desirable. The first is that the functions should yield 
problem solutions in whole or simple rational numbers that students can readily interpret. Certain key 
relationships can guide parameter relationships to generate clean solutions. Three relationships describe 
the output (Q) levels that minimize the MC, AVC, and ATC curves: 

 

a. 2
dAVC

Q
dQ

   , so at the AVC minimum: min
2

AVCQ





 . 

 

b. From Eq (5), the MC-minimizing Q, min
3

MCQ





 . 

 

c. 2 2
dATC

Q Q
dQ

      , so at the ATC minimum, min min2 2

min min

2 2

2 ( ) ( )

ATC AVC

ATC ATC
Q Q

Q Q

  




    , 

showing how FC and Q cause the ATC-minimizing Q always to exceed the AVC-minimizing 
Q. 

 

Taking advantage of the fact that min

MCQ  occurs at 2/3 of min

AVCQ  (Erfle 2014), we can ensure whole-number 

MC and AVC minima by generating values for γ = -6δk, where k is a randomly drawn, scaling parameter.  
The second desirable condition for economic problems is to identify a domain that can generate 

valid β parameters that do not get excessively large. One parsimonious way to do so is first to generate 

values for the γ and δ parameters, and then to draw a random β from the k-scaled interval 
2 2

,
3 3

k 

 

 
 
 

, 

which simplifies to [12δk2, 12δk3] if γ = -6δk. The instructor can choose the interval for random draws on 
k to suit the scale of interest. 
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We can generate whole-number ATC values by appropriate choice of the α parameter. The 

expression for 𝑄𝑚𝑖𝑛
𝐴𝑇𝐶 can be rearranged as 2 3

min min( ) 2 ( )ATC ATCQ Q    . Employing a reverse engineering 

approach to find 𝛼, we can first select a valid random value for 𝑄𝑚𝑖𝑛
𝐴𝑇𝐶 , and then generate the α parameter 

that will yield this 𝑄𝑚𝑖𝑛
𝐴𝑇𝐶 . Recognizing that 𝑄𝑚𝑖𝑛

𝐴𝑇𝐶 must exceed 𝑄𝑚𝑖𝑛
𝐴𝑉𝐶 , we draw a random integer for 𝑄𝑚𝑖𝑛

𝐴𝑇𝐶 
from the interval [(𝑄𝑚𝑖𝑛

𝐴𝑉𝐶 + 1), (2𝑄𝑚𝑖𝑛
𝐴𝑉𝐶)]. Then plug it into the equation at the beginning of this paragraph. 

The workbook and worksheet accompanying this article facilitate generating sets of random 
parameters that meet the criteria for valid cost functions. They allow the instructor to adjust domains for 
random parameter draws but offers default domains. For the cubic (δ) parameter, the default domain is 
[1, 5] in unit increments. For the scaling (k) parameter, the default domain is integers in [2,10], with the 
minimum value required to satisfy the formula for drawing random values of β. After 𝑄𝑚𝑖𝑛

𝐴𝑇𝐶 is drawn, the 
fixed cost (α) parameter is calculated from the equation above. 
 To meet the learning objectives identified early in this note, instructors typically wish for students 
to answer the questions: (1) What is the profit maximizing level of Q?, (2) Should the firm stay in 
business in the short run?, (3) Should the firm stay in business in the long run?, and (4) How can you tell? 
To accompany randomly generated cost function parameters, the associated workbook includes a table of 
derived TC, MC, AVC, and ATC values. It graphs the functions and calculates the whole-numbered Q values 
that minimize the derived MC and AVC functions. These tools are intended to aid the instructor in 
constructing workable problems that answer the questions above. However, they can also serve as the 
basis of teaching examples for courses starting with principles of microeconomics. 

To conclude, this teaching resource contribution summarizes the restrictions needed to generate 
cubic cost functions that are both economically valid and readily solved by students. It further introduces 
an associated Excel workbook and Mathematica worksheet that generate well-behaved, cubic cost 
functions with supporting information to assist instructors in building cost analysis problems for courses 
related to managerial economics and intermediate microeconomics. 
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